Sentiment Analysis Using Semi-Supervised Recursive Autoencoder
نویسنده
چکیده
The aim of this project was to use semi-supervised recursive autoencoder provided by [2] and classify the english phrases from movie reviews into five sentiment classes; very positive, positive, neutral, negative and very negative by softmax regression classifier.
منابع مشابه
Semi-Supervised Recursive Autoencoder
In this project, we implement the semi-supervised Recursive Autoencoders (RAE), and achieve the result comparable with result in [1] on the Movie Review Polarity dataset1. We achieve 76.08% accuracy, which is slightly lower than [1] ’s result 76.8%, with less vector length. Experiments show that the model can learn sentiment and build reasonable structure from sentence.We find longer word vecto...
متن کاملSemi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
We introduce a novel machine learning framework based on recursive autoencoders for sentence-level prediction of sentiment label distributions. Our method learns vector space representations for multi-word phrases. In sentiment prediction tasks these representations outperform other state-of-the-art approaches on commonly used datasets, such as movie reviews, without using any pre-defined senti...
متن کاملCutting Recursive Autoencoder Trees
Deep Learning models enjoy considerable success in Natural Language Processing. While deep architectures produce useful representations that lead to improvements in various tasks, they are often difficult to interpret. This makes the analysis of learned structures particularly difficult. In this paper, we rely on empirical tests to see whether a particular structure makes sense. We present an a...
متن کاملSentiment Analysis using Recursive Neural Network
This work is based on [1] where the recursive autoencoder (RAE) is used to predict sentiment distributions. In this project, I compare the performance of several different tree building schemes and find that greedily merging nodes with minimal autoencoder error gives the best performance, which is better than using the correct parsing tree, among others. I then apply the recursive neural networ...
متن کاملSemisupervised Autoencoder for Sentiment Analysis
In this paper, we investigate the usage of autoencoders in modeling textual data. Traditional autoencoders suffer from at least two aspects: scalability with the high dimensionality of vocabulary size and dealing with task-irrelevant words. We address this problem by introducing supervision via the loss function of autoencoders. In particular, we first train a linear classifier on the labeled d...
متن کامل